A New Class of Hilbert Pairs of Almost Symmetric Orthogonal Wavelet Bases

نویسندگان

  • Daiwei Wang
  • Xi Zhang
چکیده

This paper proposes a new class of Hilbert pairs of almost symmetric orthogonal wavelet bases. For two wavelet bases to form a Hilbert pair, the corresponding scaling lowpass filters are required to satisfy the half-sample delay condition. In this paper, we design simultaneously two scaling lowpass filters with the arbitrarily specified flat group delay responses at ω = 0, which satisfy the half-sample delay condition. In addition to specifying the number of vanishing moments, we apply the Remez exchange algorithm to minimize the difference of frequency responses between two scaling lowpass filters, in order to improve the analyticity of complex wavelets. The equiripple behavior of the error function can be obtained through a few iterations. Therefore, the resulting complex wavelets are orthogonal and almost symmetric, and have the improved analyticity. Finally, some examples are presented to demonstrate the effectiveness of the proposed design method. key words: DTCWT, Hilbert transform pair, almost symmetric orthogonal wavelets, FIR filter, Remez exchange algorithm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Design of Hilbert Transform Pairs of Wavelet Bases

Ivan W. Selesnick Electrical Engineering, Polytechnic University 6 Metrotech Center, Brooklyn, NY 11201 [email protected] ABSTRACT This paper describes design procedures, based on spectral factorization, for the design of pairs of dyadic wavelet bases where the two wavelets form a Hilbert transform pair. Both orthogonal and biorthogonal FIR solutions are presented, as well as IIR solutions. ...

متن کامل

Characters of Orthogonal Nontensor Product Trivariate Wavelet Wraps in Three-Dimensional Besov Space

Compactly supported wavelet bases for Sobolev spaces is investigated. Steming from a pair of compactly supported refinale functions with multiscale dilation factor in space 2 3 ( ) L R meeting a very mild condition, we provide a general approach for constructing wavelet bases, which is the generalization of univariate wavelets in Hilbert space. The notion of orthogonal non-tensor product trivar...

متن کامل

The design of approximate Hilbert transform pairs of wavelet bases

Several authors have demonstrated that significant improvements can be obtained in wavelet-based signal processing by utilizing a pair of wavelet transforms where the wavelets form a Hilbert transform pair. This paper describes design procedures, based on spectral factorization, for the design of pairs of dyadic wavelet bases where the two wavelets form an approximate Hilbert transform pair. Bo...

متن کامل

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 99-A  شماره 

صفحات  -

تاریخ انتشار 2016